
Xevolver XML Framework

A Framework for XML-Based AST Transformations

Introductory Tutorial

(AN UNFINISHED DRAFT)

Hiroyuki Takizawa
Graduate School of Information Sciences

Tohoku University
Sendai 980-8579 Japan

+81-22-795-7010 (office) +81-22-795-7011 (fax)
takizawa@cc.tohoku.ac.jp

June 22, 2015

Preface

Welcome to the Xevolver XML introductory tutorial. Xevolver XML (XevXML) is one of software
products developed by the Xevolver project. The purpose of this project is to help migration of
legacy HPC applications to new systems by improving their performance portabilities across system
generations. Since a high priority is given to performance, an HPC application is often optimized
and specialized for a particular HPC system. As a result, the performance is not portable to other
systems. To make matters worse, such system-specific code optimizations are likely to be scattered
over the application code. This is one main reason why HPC application migration is so painful.
It is not affordable to reoptimize the whole code whenever a new system becomes available.

XevXML is developed for XML-based AST transformations to provide an easy way for user-
defined code transformations. The current implementation of XevXML is built on top of the ROSE
compiler framework. XevXML converts ROSE’s AST to an XML document, and exposes it to
programmers. So the programmers can use any XML-related technologies and tools to transform
the AST. Then, the transformed AST is given back to the ROSE compiler framework so that the
AST is unparsed to generate a transformed application code. Instead of directly modifying an
application code, programmers can define their own code transformations to optimize the code
for each system. System-specific optimizations are represented as XML translation rules, which
can be defined separately from an application code. This leads to separation between application
requirements and system requirements, expecting a lower migration cost of HPC applications to
new systems.

3

Acknowledgments

The Xevolver Project is supported by JST CREST Research Area “Development of System Software
Technologies for post-Peta Scale High Performance Computing” led by Dr. Yonezawa at RIKEN
AICS and later by Dr. Sato at RIKEN AICS.

XevXML is under active development, and many people are being involved in the design and
development.

Shoichi Hirasawa is a research associate employed by Tohoku University for the Xevolver Project.
He has been actively working on writing translation rules and testing XevXML tools. That is, he is
always the first user of the tools whenever new versions are committed to the code repository. His
feedbacks are always helpful to improve the tools. Moreover, he is the main author of most rules in
the transformation rule library. He designed the template of XSLT rules for AST transformation.

There are many people I would like to thank for their contributions:

• Contributing Collaborators:
Reiji Suda (The University of Tokyo),
Yasuharu Hayashi (NEC Corporation),
Ryusuke Egawa (Tohoku University),
Daisuke Takahashi (University of Tsukuba),
Fumihiko Ino (Osaka University), and
Kazuhiko Komatsu (Tohoku University)

• Students:
Chunyan Wang (Tohoku University),
Xiong Xiao (Tohoku University), and
Daichi Sato (Tohoku University)

• Advisory Boards:
Hiroaki Kobayashi (Tohoku University),
Michael M. Resch (HLRS),
Wenmei W. Hwu (UIUC), and
Chisachi Kato (The University of Tokyo)

5

Contents

1 Introduction 9
1.1 An overview of XevXML . 10
1.2 XML elements and attributes . 11
1.3 XML data transformation . 13
1.4 Summary . 17

2 User-Defined Directives 19
2.1 XSLT rule generation . 19
2.2 Loop optimization . 21
2.3 Text insertion/deletion . 22
2.4 Summary . 22

3 AST Transformation Rules 23
3.1 Predefined Rules . 23
3.2 Custom Rules . 28
3.3 Summary . 36

4 Internal Structures and Behaviors 37
4.1 Utility functions . 37
4.2 Visitor classes . 40
4.3 Summary . 44

5 Installation 45
5.1 Requirements . 45
5.2 Installation guide . 45

A XML elements and their attributes 47
A.1 Class hierarchy . 47
A.2 Statements . 47

A.2.1 XML elements . 47
A.2.2 XML attributes . 51

A.3 Expressions . 53
A.4 Types . 57
A.5 Other elements . 58

7

Chapter 1

Introduction

High-performance computing (HPC) system architectures are getting more complicated and diver-
sified. Due to the system complexity, performance optimizations specific to processor architectures,
system configurations, compilers, and/or libraries, called system-specific optimizations, are manda-
tory and becoming more important to exploit the potential of a particular system; an application
code must be thoroughly optimized and specialized for one platform to achieve high performance.
As a result, one HPC application often needs to have multiple versions, each of which is optimized in
a different way for adapting to a particular platform. The diversity of system architectures increases
the number of optimized versions required for performance portability across major platforms. To
make matters worse, popular platforms can change drastically, and thus an application might need
to be optimized not only for current platforms but also for future ones. Accordingly, an increase
in system complexity and diversity would force a programmer to further invest enormous time and
effort for HPC application development and maintenance.

XevXML [10] [11] is a code transformation framework that allows users to define their own code
transformations, called user-defined code transformations. It exposes an abstract syntax tree (AST)
to users so that they can apply any transformations to the AST. Transformation rules written in
external files can be defined for individual systems, compilers, libraries, and so on. That is, code
transformations representing system-aware optimizations can be separated from an application
code. Hence, to achieve high performance, the users no longer need to specialize an application
code itself for a particular platform.

XevXML assumes that an application code is annotated with a special mark, using directives
and/or comments, and transformations are applied to the marked parts of the code. Note that the
mark indicates “where to transform,” but does not indicate “how to transform.” The transformation
rules that indicate how to transform the code are defined in external files. If system-aware code
modifications are expressed as code transformations, users can express system-awareness separately
from an application code.

As the name implies, XevXML employs eXtensible Markup Language (XML) [1] to represent
an AST, i.e., an internal representation of code structures used by compilers. XML is a widely-used
data format, and various XML-related technologies and tools have already been standardized and
matured. Therefore, the users implement special code transformations by using only those standard
tools. This chapter briefly describes an overview of code transformation with XevXML.

9

10 CHAPTER 1. INTRODUCTION

1.1 An overview of XevXML

……………….

……………….

……………….

……………….

ROSE parser SRC2XML

ROSE AST XML AST

XSLT

XSLT engine

XML AST

ROSE unparser

……………….

……………….

……………….

……………….

XML2SRC

ROSE ASTC/Fortran C/Fortran

Figure 1.1: An overview of interconversion between ROSE ASTs and XML ASTs.

XevXML has so far been developed on top of the ROSE compiler infrastructure [3] [9]. XevXML
provides the interconversion between an ROSE AST and its XML representation. Figure 1.1 shows
an overview of the interconversion. XevXML converts a ROSE AST to an XML representation of
the AST, called an XML AST. In XevXML, an XML AST is exposed to users. After user-defined
transformations, the transformed XML AST is again converted back to a ROSE AST so that ROSE
can unparse it to a C or Fortran code.

The interconversion is achieved by combining the following two commands, src2xml and xml2src.

NAME
src2xml – source-to-xml translator

SYNOPSIS
src2xml [OPTIONS] INPUT-FILE

DESCRIPTION
src2xml converts a C or Fortran code into an XML document. src2xml reads a code
from the input file given by the command-line argument, and prints an output XML
document to the standard output.

-F, --check fortran pragma=<true/false>
enable the conversion of each Fortran pragma, e.g. !$xev loog tag, to an
<SgPragmaDeclaration> element. This conversion is enabled by default, and needs
to be disabled to make the behavior identical to that of ROSE.

-h, --help
print the usage.

src2xml also accepts some of ROSE command-line options such as -rose:verbose. A
ROSE command-line option -rose:skip syntax check is automatically appended to the
command-line options because it is required for some Fortran90 codes.

EXAMPLES
src2xml hello.c > hello.xml

This command will read hello.c and output its AST as an XML document to hello.xml.

1.2. XML ELEMENTS AND ATTRIBUTES 11

NAME
xml2src – xml-to-source translator

SYNOPSIS
xml2src [OPTIONS]

DESCRIPTION
xml2src converts an XML AST to a C or Fortran code. Since the original language, C
or Fortran, is recorded in an XML AST, xml2src generates a code written in the original
language. xml2xml reads an XML AST from the standard input, and prints the generated
code to the standard output. At present, command-line options for xml2src are simply
ignored.

EXAMPLES
xml2src < hello.xml > hello-again.c

This command will read hello.xml and output its code to hello-again.c.

An XML AST is exposed to users. Thus, the users can apply any transformation to the
AST. As an AST is represented as an XML document, any XML-related technologies and tools
are available for the transformations. XevXML employs XML Stylesheet Language Transforma-
tion (XSLT) [6] [12] as the low-level interface to express the transformation rules of an XML AST.
AST transformation is what compilers do internally for code transformation. Therefore, XevXML
is capable of implementing various code transformations usually done by compilers.

XevXML can easily collaborate with ROSE. ROSE already has various features of code analyses
and transformations to implement custom code transformation programs in C++. It must be
painful if a user is required to reimplement those features from scratch for XevXML. So XevXML
provides not only the above basic commands but also some C++ classes and functions, which are
helpful to read and write XML ASTs, so that code transformation programs developed with ROSE
can handle XML ASTs. Those classes and functions will be further described in Chapter 4.

If a code transformation is general enough and hence reusable in many applications, it could
be implemented using either ROSE or XevXML. However, code transformations in practice could
be application-specific, system-specific, domain-specific, and even programmer-specific. If such a
code transformation program is implemented with ROSE, the user needs to maintain the program
in addition to his/her application code. In XevXML, only transformation rules are defined declar-
atively, and code transformations are performed using standard XML tools. So the user does not
need to develop his/her own program for applying the rules to application codes.

1.2 XML elements and attributes

Let’s get started with a simple example, “Hello, World!” in C.

#include <stdio.h>

12 CHAPTER 1. INTRODUCTION

int main()

{

printf("Hello, World!\n");

return 0;

}

Using the src2xml command, the above code is converted to an AST of the following XML
document.

<?xml version="1.0" encoding="UTF-8"?>

<SgSourceFile filename="hello.c" language="2" format="2">

<SgGlobal>

<SgFunctionDeclaration name="main" end_name="0" >

<SgTypeInt/>

<SgFunctionParameterList/>

<SgFunctionDefinition>

<SgBasicBlock>

<SgExprStatement>

<SgFunctionCallExp>

<SgFunctionRefExp symbol="printf" />

<SgExprListExp>

<SgCastExp mode="0" >

<SgPointerType base_type="SgModifierType" >

<SgModifierType modifier="const" >

<SgTypeChar/>

</SgModifierType>

<SgTypeChar/>

</SgPointerType>

<SgStringVal value="Hello, World!\n" paren="1"/>

</SgCastExp>

</SgExprListExp>

</SgFunctionCallExp>

</SgExprStatement>

<SgReturnStmt>

<SgIntVal value="0" string="0" />

</SgReturnStmt>

</SgBasicBlock>

</SgFunctionDefinition>

<PreprocessingInfo pos="2" type="6" >

#include <stdio.h>

</PreprocessingInfo>

1.3. XML DATA TRANSFORMATION 13

</SgFunctionDeclaration>

</SgGlobal>

</SgSourceFile>

The data format of XML ASTs is designed so that the interconversion between ROSE ASTs
and XML ASTs becomes simple. In general, an XML document consists of XML elements and
their attributes. In an XML AST, each XML element corresponds to a ROSE AST node. XML
attributes of an XML element are used to keep the necessary information to restore the ROSE AST
node. An XML AST looks like a text representation of a ROSE AST. In other words, XevXML
provides another interface, XML, to handle ROSE AST nodes.

In the above XML document, the first line just indicates that the file is written in XML. The
root node of an AST is the <SgSourceFile> element in the second line. The <SgSourceFile>
element represents the whole C code. The <SgGlobal> element in the third line is a child node of
the root node, and indicates the global scope of the C code. In the global scope, the main function
is declared and defined. In the function body, the first statement is an expression statement, and
the second statement is a return statement. Comments and preprocessor information such as
#include <stdio.h> are written as strings within the PreprocessingInfo element.

XML attributes are used to restore ROSE AST nodes. For example, the <SgStringVal> ele-
ment corresponds to a ROSE AST node of a SgStringVal class object representing a string. Thus, a
string of "Hello, World!\n" is written as its value attribute. Similarly, the<SgFunctionRefExp>
element is a reference to the name of a function, and the function name is given as the name at-
tribute. Let’s change “printf” is to “puts” by a text editor. Then, when the modified XML AST is
converted to a C code (by using the xml2src command), the function call of printf will be changed
to that of puts. This is a simple example to show that, in XevXML, XML data transformation
results in AST transformation and thereby code transformation.

See the ROSE reference manual [4] to learn more about the definition of each AST node.

1.3 XML data transformation

XML data are texts, and various tools are thus available to modify an XML AST. As shown in
Section 1.2, even a text editor can modify an XML AST. One may consider that, in the case of
using a text editor, modifying the original code written in C/Fortran is much easier than modifying
its XML AST. So why don’t we directly modify the code? The answer is to avoid specializing the
code for a particular platform.

In many cases, system-aware code optimizations assuming a particular target platform are nec-
essary to exploit the system performance. A problem is that those optimizations are often harmful
to the performance of another platform. A pragmatic approach is to maintain multiple versions of
a code, each of which is optimized for a different platform. However, this results in degrading the
maintainability and making legacy application migration more painful.

XevXML has been developed to replace code modifications with “mechanical transformations”
of an XML AST. There are several benefits of the replacement. One important benefit is that
the original code is not necessarily specialized for a particular platform. In other words, system-
awareness is separated from an application code. This will be helpful to avoid maintaining multiple
versions of an application code.

14 CHAPTER 1. INTRODUCTION

Another benefit is that expert knowledge about performance optimizations can be expressed
in a machine-usable way. Basically, performance optimizations are very intellectual tasks that are
often done on a case-by-case basis. However, focusing on a particular case, there are repetitive
patterns in code modifications for performance optimizations. Thus, the code modifications can be
replaced with a smaller number of mechanical code transformations.

The mechanical code transformations required instead of code modifications could be application-
specific, system-specific, domain-specific, and even programmer-specific. Thus custom code trans-
formations are often needed for special demands of individual cases. Therefore, XevXML has been
developed for users to define their own code transformations in an easy way.

In XevXML, XSLT is currently employed to describe custom transformation rules of XML
ASTs at the lowest abstraction level1 In XSLT, XML data transformations are themselves written
in XML. XSLT uses XPath expressions [5] [6], to define a pattern within a tree of XML elements
and attributes. During the transformation process of XSLT, every XML element is visited in a
depth-first manner. When a pattern is found at an XML element, the XML element is altered
based on the rule associated with the pattern.

A simple XPath expression looks like a UNIX file path. In a UNIX file system, files and
directories organize a tree structure. A file path is a text string to specify a location in the directory
tree. There are two ways to point to the location of a file or a diretory. One is an absolute path,
and the other is a relative path. If the string of a path starts with a slash, /, the path is an absolute
path, otherwise it is a relative path. An absolute path is the path to a file or a directory from the
root diretory. For example, the root directory is expressed by /, its sub-directory named “sub” is
expressed by /sub, and a file named “xfile” that is located in the “sub” directory is expressed by
/sub/xfile. Note that / represents the root directory and is also used as a delimiting character.
On the other hand, a relative path indicates the path from the working directory where a user or
an application is located. When the working diretory is /sub, a relative path to a xfile can be
represented as xfile, ./xfile, ../sub/xfile, etc. Of course, those relative paths point to the
same location because . and .. denote the working diretory and its parent directory, respectively.

As well as a UNIX file path, an XPath expression also points to a location in an XML document.
For example, the root of an XML document is denoted by /. A pattern in XML data is described
by a combination of XPath expressions.

An example of XSLT rules for AST transformation are as follows.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:exslt="http://exslt.org/common">

<xsl:template match="/">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="*">

1Several high-level interfaces for definition of code transformation rules are also under active development in the
Xevolver project. One of such interfaces will be described in Chapter 2.

1.3. XML DATA TRANSFORMATION 15

<xsl:copy>

<xsl:copy-of select="@*"/>

<xsl:apply-templates/>

</xsl:copy>

</xsl:template>

<xsl:template match="SgForStatement">

<xsl:if test=".//*=SgForStatement">

startLoopNest(); /* inserted */

</xsl:if>

<xsl:copy>

<xsl:copy-of select="@*"/>

<xsl:apply-templates/>

</xsl:copy>

<xsl:if test=".//*=SgForStatement">

endLoopNest(); /* inserted */

</xsl:if>

</xsl:template>

</xsl:stylesheet>

The above XML file defines three rules, each of which is described within the <xsl:template>
element. Based on these rules, an XML document is transformed to another XML document, called
an output XML document.

The first rule matches the root of an XML document. The rule just invokes<xsl::apply-templates/>
that by default dictates to visit all the sub-nodes and apply appropriate rules to them.

The second rule matches every XML element of an XML document, because its XPath expression
is given by a wild-card operator, *. The rule is applied to an element unless a more specific rule
matches the element. This rule simply copies the element and its attributes to the output XML
document. The rule is recursively invoked because it invokes <xsl::apply-templates/>.

The third rule matches only an<SgForStatement> element. It checks if another<SgForStatement>
element exists in the subtree of the matched element. Only if it exists, text data are inserted before
and after the matched element.

If the above XSLT rules are applied to an XML AST, two function calls, startLoopNest() and
endLoopNest(), are inserted before and after each nested loop, and a single loop is unchanged as
shown below.

beginLoopNest(); /* inserted */

for(i=0;i<N;i++){

for(j=0;j<M;j++){

/* loop body 1 */

}

}

16 CHAPTER 1. INTRODUCTION

endLoopNest(); /* inserted */

for(j=0;j<M;j++){

/* loop body 2 */

}

This is an example of text insertion based on code pattern matching. Although this kind of rule
is useful in practice, more advanced code transformations can be achieved by writing XSLT rules
because XSLT can change the structure of an XML AST. Chapter 3 will describe how to write
XSLT rules for AST transformation.

Although users can use any XSLT processor for code transformation, XevXML provides the
xsltexec command for XSLT-based code transformation. In general, an XSLT file can import
XSLT rules defined in other XSLT files. If a specified file written in an XSLT file for importing
rules does not exist in the working directory, the xsltexec command looks for the file in the
XevXML transformation library path specified by an environment variable, XEVXML LIBRARY PATH.
The library path would usually be specified so that the command uses predefined XSLT rules offered
by XevXML. The command also has a command line option to specify the library path.

NAME
xsltexec – a simple XSLT processor for XevXML

SYNOPSIS
xsltexec [OPTIONS] XSLT-FILE

DESCRIPTION
xsltexec applies XSLT rules to an XML representation of an AST, called an XML AST.
XSLT rules are defined in a file given by the command-line argument. In the XSLT
file, predefined XSLT rules offered by XevXML are also available without specifying the
absolute paths of the XSLT files installed to the system.

The command reads an input XML AST from the standard input, and prints an output
XML AST to the standard output. The command-line options are as follows.

-L, --libdir=<path>
specify the library path.

-h, --help
print the usage.

An environment variable, XEVXML LIBRARY PATH, is used to configure the default path of
the transformation library.

EXAMPLES
xsltexec sample.xsl < hello.xml

This command will read an XML AST in hello.xml and transform the AST based on the

1.4. SUMMARY 17

XSLT rules defined in sample.xsl. The transformed AST is printed out to the standard
output.

1.4 Summary

This chapter describes an overview of the XevXML framework. Then, three basic commands,
src2xml, xml2src, and xsltexec, are introduced for user-defined code transformations with XML
specifications and tools. Using some simple examples, interconversion between ROSE ASTs and
XML ASTs is explained, and also simple transformations are shown in this chapter.

Chapter 2

User-Defined Directives

In XevXML, transformation rules are defined by XSLT rules, and applied to an XML AST. By
writing appropriate XSLT rules, XevXML as well as compilers can transform an AST in various
ways. However, directly transforming an AST might be a too low-level approach for performance
optimizations, especially if some optimization parameters need to be empirically configured in a
try-and-error fashion as often seen in practical loop optimizations. Therefore, several high-level
interfaces for XevXML are under development.

In practice, code modifications for loop optimizations are often expressed by combinations of
well-known loop transformations. Moreover, text insertion and deletion based on code pattern
matching are also frequently required for practical performance optimizations. Nonetheless, it is
not very easy to correctly define their XSLT rules manually.

In this chapter, a high-level interface for user-defined code transformations is described. The
interface is designed only for some specific purposes. Although the interface is less flexible than
the XSLT approach of straightforwardly dictating AST transformations, it offers an easy way to
quickly define a custom compiler directive that is associated with a composite of predefined rules.
Such a directive can also be associated with text insertion and deletion.

The high-level interface is useful for generating a lot of various loop variants that are optimized
with different loop transformation rules and parameters. Such loop variants are often required for
so-called auto-tuning [8], which is automatic performance tuning based on empirical performance
profiling. Besides, the high-level interface is also helpful for mechanically inserting some texts into
a code, which are frequently required in practical performance optimizations.

2.1 XSLT rule generation

XevXML provides the xsltgen command that reads a simple JSON[2] file to generate XSLT rules,
each of which is associated with one user-defined compiler directive. An XSLT rule generated
by xsltgen is either a composite of predefined XSLT rules or text insertion/deletion. Although
xsltgen is available only for these purposes, it provides a much easier way to define a custom
compiler directive associated with such a rule.

19

20 CHAPTER 2. USER-DEFINED DIRECTIVES

NAME
xsltgen – XSLT rule generator

SYNOPSIS
xsltgen [OPTIONS]

DESCRIPTION
xsltgen converts a configuration file in JSON to an XSLT file of code transformation
rules. xsltgen reads a JSON file from the standard input, and prints a XSLT file to the
standard output.

EXAMPLES
xsltgen < config.json > rules.xsl

This command will read test.json and write XSLT rules to rules.xsl.

An example of a JSON file is as follows.

{

"xev loop_tag1":{

"target":"SgIfStmt",

"insert-before":"!$test"

}

"xev loop_tag2":{

"target":"SgFortranDo",

"rules":[

{"chillUnrollJam":{"loopName":"k","factor":4}},

{"chillUnroll":{"loopName":"i","factor":2}}

]

}

}

A JSON object enclosed in { and } is an unordered collection of any values. The root object
whose { is in the first line contains two pairs of keys and values that are directive definitions. Notice
that the colon character, :, is used to separate a key and its value. In a directive definition, the key
indicates the directive name, and its value is a JSON object, called a rule definition, that defines
the rule associated with the directive. In the above file, two compiler directives, xev loop tag1

and xev loop tag2, are defined for Fortran. The pair whose key is "target" specifies what kind
of statements the rule is applied. That is, the value is expected to be the AST node name of the
statement that appears after the directive. If the directive name is "*", the rule defined by its value
is applied to the target AST node even if there is no directive attached to the statement.

The first directive, xev loop tag1, assumes that it is followed by an IF statement. Then, it
simply inserts a comment before the IF statement.

2.2. LOOP OPTIMIZATION 21

The second directive, xev loop tag2, is associated with a composite of two predefined rules,
chillUnrollJam and chillUnroll. This directive applies those loop optimization rules with
the given parameters to the DO statement following the directive, which is an XML element of
<SgFortranDo>. The predefined rules with their parameters are listed in an array of JSON, which
is enclosed in [and]. Unlike an object of JSON, an array is an ordered list. The rules are applied
in the same order as they appear in the array.

2.2 Loop optimization

The most time-consuming part of a scientific application is usually written as a loop, a so-called
kernel loop. Thus, loop optimization is a key to improve the performance of such an application.
There are a lot of loop optimization techniques, and most of them are supposed to be done by
compilers. Typical loop optimization techniques are as follows.

• Loop unrolling

• Loop tiling

• Loop interchange

• Loop permutation

• Loop collapse

• Loop fusion

• Loop fission (aka. loop distribution)

• Unroll and jam (aka. outer loop unrolling)

In some cases, compilers are unable to perfectly apply those techniques to a kernel loop for
various reasons. In such a case, manual optimizations of the kernel loop might be required to achieve
high performance. However, even if the optimization is a certain combination of the techniques listed
above, manual optimization of a kernel loop is not an easy task. This is because an appropriate
combination of loop optimization techniques is unknown. In addition, most of loop optimization
techniques have some parameters that need to be determined appropriately for high performance.
To make matters worse, different platforms require different loop optimizations. Appropriate loop
optimization, i.e., the combination and parameters, could change drastically depending on the target
platform. Thus, manual code modification for loop optimization generally results in specializing the
code only for a particular platform. Accordingly, the necessary information for loop optimizations
should be separated from an application code.

Because of the importance, XevXML provides the xsltgen command as an easy way to compose
loop optimization techniques and to associate the composite with a user-defined compiler directive.
Code transformation rules for basic loop optimization techniques are predefined. The predefined
rules in the XevXML transformation rule library are described in Section 3.1. Those predefined
rules are themselves written in XSLT, and hence customizable for special demands of individual
cases. A customized rule can also be used together with other predefined rules using the xsltgen

command. Chapter 3 describes how to customize predefined rules and also how to define new rules.

22 CHAPTER 2. USER-DEFINED DIRECTIVES

2.3 Text insertion/deletion

The xsltgen command can define a custom compiler directive associated with not only AST trans-
formations but also with text insertion and removal. Such a directive is useful to literally change
some statements depending on the target platform. Although the C preprocessor can also achieve it
using #ifdef, such an approach often makes an application code unmaintainable, so-called #ifdef

hell. In the case of using xsltgen, the text to be inserted is written in an external file, which is
an XSLT file generated by xsltgen. Therefore, the original code is not messed up with platform-
dependent code fragments.

To define a directive for text insertion, a JSON object of the directive definition has one or
more pairs whose keys are "insert-before", "insert-after", or "replace" and whose values
are strings. As the names imply, "insert-before", "insert-after", and "replace" insert a
text before the target statement, insert a text after the target statement, and replace the target
statement with a text, respectively.

For example, the following JSON file will produce an XML rule that literally inserts function
calls before and after a for loop in a C code.

{

"*":{

"target":"SgForStatement",

"insert-before":"startLoop();",

"insert-after":"endLoop();"

}

}

In the above directive definition, the directive name is *. The rule does not need any directive
in the code, and is applied to every for statement. More specifically, the rule is applied to the AST
subtree whose root is SgForStatement. Therefore, the function call of endLoop(); is inserted right
after the loop body of every for loop.

If a pair of "replace" and an empty string is given in the directive definition, the directive will
simply remove the target statement. Namely, such a directive can be used to remove the statement
for a particular platform.

2.4 Summary

The xsltgen command is now under active development to provide a high-level interface for users
to compose predefined loop optimizations. Although it is currently used only for some specific
purposes, it offers a very easy way to define a user-defined code transformation associated with a
custom directive. Therefore, it will be further extended to allow users to quickly define various
kinds of code transformations.

Chapter 3

AST Transformation Rules

XevXML represents an AST in an XML format, and various XML tools are hence available for
AST transformation. In XevXML, a transformation rule is (internally) represented as an XSLT
rule. If a special code transformation is needed, the most flexible and expressive way is to write
an XSLT rule for the transformation, even though high-level interfaces are also developed for some
specific purposes as described in Chapter 2. An XSLT rule consists of XSLT template rules, each
of which is applied to an XML element if the element matches a pattern of the XPath expression
associated with the XSLT template rule.

XevXML provides some predefined XSLT template rules. Users can customize the predefined
rules for their own purposes. Thus, an XSLT template rule can be used as a sample or a baseline
for users to newly define their special transformation rules. This chapter describes how to use and
customize an XSLT rule for code transformation.

3.1 Predefined Rules

Remember that, in XevXML, every transformation rule is internally written in XSLT. You can
write such a rule from scratch if you want. But, a code transformation rule generally consists of
many “XSLT template rules,” and some of them are reusable in other code transformation rules.
Therefore, XevXML offers some predefined XSLT template rules that can be used as a part of a
user-defined code transformation rule.

Let’s get started with a simple XSLT rule before explaining the predefined rules.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:exslt="http://exslt.org/common">

<xsl:template match="/">

<xsl:apply-templates/>

</xsl:template>

23

24 CHAPTER 3. AST TRANSFORMATION RULES

<xsl:template match="*">

<xsl:copy>

<xsl:copy-of select="@*"/>

<xsl:apply-templates/>

</xsl:copy>

</xsl:template>

<xsl:template match="SgFortranDo">

<xsl:if test="preceding-sibling::*[1]/SgPragma/@pragma=’xev loop_tag’">

!pragma is found

</xsl:if>

<xsl:copy>

<xsl:copy-of select="@*"/>

<xsl:apply-templates mode="loopbody"/>

</xsl:copy>

</xsl:template>

<xsl:template match="*" mode="loopbody">

! in a loop body

<xsl:copy>

<xsl:copy-of select="@*"/>

<xsl:apply-templates mode="loopbody"/>

</xsl:copy>

</xsl:template>

</xsl:stylesheet>

As mentioned in Section 1.3, an XSLT rule usually consists of several “template” rules expressed
by <xsl:template> elements. In the above example, four template rules are defined. Each
template rule has a match attribute whose value is an XPath expression. When an XSLT rule
consisting of multiple template rules is applied to an XML AST, every XML element in the XML
AST, i.e. every AST node, is visited once in a depth-first manner. Then, if an XML element matches
the XPath expression given by the match attribute of a template rule, the template rule is applied
to the matched XML element.

In the above example, the XPath expression of the first template rule, i.e., /, matches only the
root node of an XML AST that is an <SgSourceFile> element. Therefore, its rule is applied to
the root node, and <xsl:apply-templates> is called for its child nodes.

The second template rule matches every node in the XML AST, i.e., *, and its rule is applied to
the node unless a more specific rule matches the node. This rule also calls<xsl:apply-templates>
for every child node.

The third template rule matches only an <SgFortranDo> element. This uses an <xsl:if>
element to check if the XPath expression given by its test attribute is true. The expression is true
only if

• The preceding sibling element of the <SgFortranDo> element has an <SgPragma> element

3.1. PREDEFINED RULES 25

as a child node,

• The <SgPragma> element has a pragma attribute, and

• The attribute value is a string of ”xev loop tag”.

If all the conditions are met, the template rule inserts a comment, “pragma is found,” to the code
before copying sub-nodes and attributes of the matched <SgFortranDo> element.

In the third template rule, an <xsl::apply-templates> element is used with a mode attribute.
As a result, template rules with the same mode are applied to the child nodes. In this example, the
fourth template rule is applied to every child node of an <SgFortranDo> element, for which all the
above conditions are met. The fourth template rule instead of the second rule matches every node if
<xsl::apply-templates> is used with the loopbody mode. In this way, different template rules
can be applied only to a subset of AST nodes.

If the third rule and/or the fourth rule is modified so as to transform a loop structure and/or a
loop body, the above XSLT rule can be considered as a loop transformation rule applied only to loops
annotated with "xev loop tag". Although such a loop transformation rule could be complex, its
components, i.e. XSLT template rules, are reusable for many application codes. Therefore, XevXML
provides a library of predefined XSLT template rules often required for basic loop optimizations.

In the template rule library, a code transformation rule is assumed to be comprised of three
steps. One step is initialization, which usually finds an annotation being used to indicate where to
transform. Another step is to move onto an XML element that is the root node of a subtree to
be transformed. The other step is to transform the subtree, and print it out in XML. The library
offers several predefined rules for each step.

Using such predefined template rules for each step, a special directive for unrolling Loop i can
be defined as follow.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:import href="libCHiLL.xsl" />

<xsl:output method="xml" encoding="UTF-8" />

<xsl:template match="*" mode="xevInitHook">

<xsl:apply-templates select="." mode="xevFindDirective">

<xsl:with-param name="directiveName" select="’xev loop_tag’" />

</xsl:apply-templates>

</xsl:template>

<xsl:template match="*" mode="xevMoveHook">

<xsl:apply-templates select="." mode="xevGoToLoop">

<xsl:with-param name="loopName" select="’i’" />

</xsl:apply-templates>

26 CHAPTER 3. AST TRANSFORMATION RULES

</xsl:template>

<xsl:template match="*" mode="xevTransformationHook">

<xsl:apply-templates select="." mode="chillUnroll">

<xsl:with-param name="factor" select="4" />

<xsl:with-param name="loopName" select="’i’" />

</xsl:apply-templates>

</xsl:template>

</xsl:stylesheet>

The template rule with the xevInitHook mode represents the first step of the initialization.
In the rule, <xsl:apply-templates> is used with the xevFindDirective mode. This results in
using a predefined template rule associated with the xevFindDirective mode, and also finds a
directive, xev loop tag.

The template rule with the xevMoveHook mode represents the second step. In the rule, the
xevGoToLoop mode is used when calling <xsl:apply-templates>. This results in visiting a loop
whose index variable is i. The loop is to be transformed by the template rule of the third step.

The template rule with the xevTransformationHookmode represents the third step. In the rule,
<xsl:apply-templates> is used with the chillUnrollmode for loop unrolling. The chillUnroll
mode needs two parameters, factor and loopName. In this example, the third rule unrolls Loop i
four times.

In this way, we can organize a custom compiler directive by directly using XevXML’s low-level
interface, i.e., XSLT.

In the current version of XevXML, all of predefined template rules are written for Fortran
programs. It is ongoing to define such rules for C programs. The predefined rules currently included
in the library are as follows.

Mode Parameters Description

Initialization rules
xevFindDirective directiveName A compiler directive specified by the directiveName

attribute is found by this rule.
Movement rules
xevGoToLoop loopName The loop whose index variable is loopName is visited by

using the rule.
xevGoToVar varName A variable reference to varName is visited by using the

rule.
xevSkipToNthLoop loopName The N -th loop from a loop whose index variable is given

by loopName is visited by using the rule.N

xevGoToHere none This is a dummy rule to do nothing at the second step of
a code transformation.

(continue to next page)

3.1. PREDEFINED RULES 27

(continued)
Mode Parameters Description

Basic loop optimization rules
xevLoopCollapse firstLoop Two loops are collapsed into a loop. Two parameters,

firstLoop and secondLoop, specify the names of index
variables of the loops to be collapsed.

secondLoop

xevLoopFission none A loop is broken into two loops. The first loop contains
statements before a directive in the original loop body.
The second loop contains the statements after the
directive.

xevLoopFusion none Two consecutive loops are fused into a single loop.
Statements in the two loops are moved into the body of
the new loop.

xevLoopInterchange none Two consecutive loops are interchanged.
xevLoopInversion none A while loop body is inverted into a do while loop with a

if statement.
xevLoopReversal none The order of a loop index is reversed.
xevLoopSkewing none The index of the inner loop of a loop nest is transformed

into a new one that is dependent on the index of the outer
loop.

xevLoopStripMining size
The iteration of a loop is divided into two consecutive
loops. size is the division size of the loop index.

factor

xevLoopTile size1 Two consecutive loops’ iteration space is partitioned into
blocks. size1 is the block size of the outer loop and
size2 is the block size of the inner loop.

size2

xevLoopUnroll loopName A loop is unrolled. loopName is the name of the index
variable. factor is an unroll factor; every statement in
the loop body is duplicated factor times.

factor

xevLoopUnswitching none An conditional if statement in a loop body is moved
outside of the loop.

CHiLL-compatible versions of optimization rules
chillFuse none Two consecutive loops are fused into a single loop.

Statements in the two loops are moved into the body of
the new loop.

chillPermute firstLoop The order of up to three loops are changed. firstLoop,
secondLoop, and thirdLoop are the names of index
variables used by the loops to be permuted.

secondLoop

thirdLoop

chillSplit none This is the CHiLL-compatible version of xevLoopFission.
chillTile size1 Two consecutive loops’ iteration space is partitioned into

blocks. size1 is the block size of the outer loop and
size2 is the block size of the inner loop.

size2

chillUnroll loopName A loop in unrolled. loopName is the name of the index
variable. factor is an unroll factor; every statement in
the loop body is duplicated factor times.

factor

(continue to next page)

28 CHAPTER 3. AST TRANSFORMATION RULES

(continued)
Mode Parameters Description

chillUnrollJam loopName The outer loop of a loop nest is unrolled. loopName is the
name of the index variable. factor is an unroll factor;
every statement in the loop body is duplicated factor

times.

factor

The above predefined template rules are basically designed under assumption of the three steps
defined with the xevInitHook, xevMoveHook, and xevTransformHook modes. But we do not nec-
essarily use the predefined rules for all of the three steps. If necessary, some steps can be manually
described as in the first XSLT example of this section. Indeed, the xsltgen command currently
uses predefined rules only for the third step. The XSLT template rules for the other two steps are
written directly in individual XSLT files. See the XSLT file generated by the xsltgen command
for details.

3.2 Custom Rules

This section is a step-by-step tutorial to define a custom XSLT rule.

Since XSLT is an expressive programming language, we can define an arbitrary XSLT template
rule in various ways. But there is a frequently-used way to define an XSLT template rule for code
transformation. One easy and typical way is summarized as follows.

Step 1. Write two versions of a code. One is the orginal version and the other is its translated
version. Let Cin and Cout be the original version and the translated version, respectively.
They can be considered as an input code example and an output code example of the code
transformation to be defined below.

Step 2. Convert Cin and Cout to their XML representations, which are subtrees of XML ASTs,
called a Cin subtree and a Cout subtree, respectively. The src2xml command can produce an
XML AST of a code. Thus, those subtrees should appear in the XML AST if Cin and Cout

are in the code.

Step 3. Write an XSLT template rule whose XPath expression matches the code fragment to be
transformed. At this step, the XSLT template rule can be empty, i.e., the <xsl:template>
element does not have child elements for writing XML elements into the output XML data.
A macthed code fragment will be completely removed if the rule is empty.

Step 4. Copy the Cout subtree into the XSLT template rule. That is, the XML elements of the
Cout subtree are simply used as child nodes of the <xsl:template> element. At this step,
any code fragment matching the XSLT template rule is replaced with Cout.

Step 5. Generalize the rule so that some statements and/or expressions in the original code are
copied to the translated code. By comparing the subtrees of Cin and Cout, we can consider
which XML elements of Cin should be copied to the subtree of the output code.

3.2. CUSTOM RULES 29

Step 1. Write two versions of a code

In the following, an XSLT rule to translate a simple DO WHILE loop to its another version is defined as
an example. The two versions are as follows. This loop transformation is so-called loop inversion [?].
Hereafter, the former version is called the original loop, and the latter is the target loop.

! original loop

do while(i<n)

a(i) = 0

i = i+1

end do

! target loop

if (i<n) then

do

a(i) = 0

i = i+1

if (i<n) cycle

exit

end do

endif

Step 2. Convert the loops to XML

By converting the target loop, we can get the following XML data, which is a subtree of an XML
AST. If this subtree exists in an XML AST, the target loop (as is) appears in the output code when
the XML AST is unparsed.

<SgIfStmt end="1" then="1">

<SgExprStatement>

<SgLessThanOp>

<SgVarRefExp name="i" />

<SgVarRefExp name="n" />

</SgLessThanOp>

</SgExprStatement>

<SgBasicBlock>

<SgFortranDo style="0" end="1" slabel="">

<SgNullExpression />

<SgNullExpression />

30 CHAPTER 3. AST TRANSFORMATION RULES

<SgNullExpression />

<SgBasicBlock>

<SgExprStatement>

<SgAssignOp>

<SgPntrArrRefExp lvalue="1">

<SgVarRefExp name="a" />

<SgExprListExp>

<SgVarRefExp name="i" />

</SgExprListExp>

</SgPntrArrRefExp>

<SgIntVal value="0" string="0" />

</SgAssignOp>

</SgExprStatement>

<SgExprStatement>

<SgAssignOp>

<SgVarRefExp name="i" lvalue="1" />

<SgAddOp>

<SgVarRefExp name="i" />

<SgIntVal value="1" string="1" />

</SgAddOp>

</SgAssignOp>

</SgExprStatement>

<SgIfStmt end="0" then="0">

<SgExprStatement>

<SgLessThanOp>

<SgVarRefExp name="i" />

<SgVarRefExp name="n" />

</SgLessThanOp>

</SgExprStatement>

<SgBasicBlock>

<SgContinueStmt />

</SgBasicBlock>

<SgBasicBlock />

</SgIfStmt>

<SgBreakStmt />

</SgBasicBlock>

</SgFortranDo>

</SgBasicBlock>

<SgBasicBlock />

</SgIfStmt>

It is easy to get the XML data. If the original loop and the target loop are in a code, their
subtrees appear in the XML AST of the code. The XML AST can be easily obtained by using the
src2xml command. See Chapter 1 for details of the command.

3.2. CUSTOM RULES 31

Step 3. Write an initial XSLT template rule

The syntax of an XSLT template rule is as follows.

<xsl:template match=XXXX mode=ZZZZ>

YYYY

</xsl:template>

Here, XXXX and YYYY must be correctly written to define an XSLT template rule. Roughly
speaking, XXXX indicates what kind of an XML element is subject to this rule, and YYYY indicates
how the XML element appears in the output XML data. For example, if we want to write a rule
applied to every <SgWhileStmt> element, XXXX should be written as "SgWhileStmt". If YYYY is
empty, the matched XML element and its sub-nodes do not appear in the output XML data. ZZZZ
is optinal but important for using predefined rules in XevXML. An XSLT template rule associated
with the ZZZZ mode does not match XXXX unless it is invoked with the ZZZZ mode.

As shown in the first XSLT example in Section 3.1, we can write a rule so that it is applied
only to an annotated code fragment. An “empty” XSLT template rule applied only to DO WHILE

statements annotated with !$xev loop tag is as follows.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:exslt="http://exslt.org/common">

<xsl:template match="/">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="*">

<xsl:copy>

<xsl:copy-of select="@*"/>

<xsl:apply-templates/>

</xsl:copy>

</xsl:template>

<xsl:template match="SgWhileStmt">

<xsl:choose>

<xsl:when test="preceding-sibling::*[1]/SgPragma/@pragma=’xev loop_tag’">

<!-- rule for annotated statements should be written here -->

</xsl:when>

<xsl:otherwise>

<xsl:copy>

32 CHAPTER 3. AST TRANSFORMATION RULES

<xsl:copy-of select="@*"/>

<xsl:apply-templates/>

</xsl:copy>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:stylesheet>

Or, by using the predefined rules provided by XevXml, the above rule can be simplified as
follows.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:exslt="http://exslt.org/common">

<xsl:import href="libCHiLL.xsl" />

<xsl:template match="*" mode="xevInitHook">

<xsl:apply-templates select="." mode="xevFindDirective">

<xsl:with-param name="directiveName" select="’xev loop_tag’" />

</xsl:apply-templates>

</xsl:template>

<xsl:template match="*" mode="xevMoveHook">

<xsl:apply-templates select="." mode="xevGoToLoop">

<xsl:with-param name="loopName" select="’i’" />

</xsl:apply-templates>

</xsl:template>

<xsl:template match="*" mode="xevTransformationHook">

<xsl:apply-templates select="." mode="myLoopInversion"/>

</xsl:template>

<xsl:template match="SgWhileStmt" mode="myLoopInversion">

<!-- rule for annotated statements should be written here -->

</xsl:template>

</xsl:stylesheet>

Since the fourth rule is invoked with the myLoopInversionmode, the rule is called the myLoopInversion
rule. The above myLoopInversion rule will remove annotated DO WHILE statements because it is
empty (only a comment is written now) and no XML element is hence output to the output XML

3.2. CUSTOM RULES 33

data. Therefore, in the following, the myLoopInversion rule is modified so that it outputs a trans-
formed version of the original loop. The other template rules are unmodified.

Step 4. Copy the subtree of the target loop to the XML template rule

The comment in the myLoopInversion rule is replaced with the subtree obtained at Step 2. If this
rule is applied to an XML AST, every annotated DO WHILE statement with its loop body is replaced
with the target loop as is.

<xsl:template match="SgWhileStmt" mode="myLoopInversion">

<SgIfStmt end="1" then="1">

<SgExprStatement>

<SgLessThanOp>

<SgVarRefExp name="i" />

<SgVarRefExp name="n" />

</SgLessThanOp>

</SgExprStatement>

... omitted ... (See Step 2)

</SgIfStmt>

</xsl:template>

Step 5. Generalize the XSLT template rule

The myLoopInversion rule in Step 4 simply replaces an annotated DO WHILE loop with the target
loop, and is usable only for loop inversion of the original loop (See Step 1). Therefore, we need to
generalize the rule so that it can be reusable for loop inversion of other loops.

To generalize it, we usually need to copy some statements and expressions of the original loop
to the target loop. One is the condition expression of the DO WHILE statement of the original loop,
i.e., (i < n). If a DO WHILE statement has a different condition expression, the expression should
be used in the target loop. Nonetheless, the myLoopInversion rule in Step 4 always uses (i < n)

as the condition expression of the transformed loop without repect to the condition expression of a
DO WHILE loop to be transformed. Notice that the expression appears twice in the target loop (See
Step 1). One is the condition of the first IF statement, and the other is the condition of the second
IF statement.

See the subtree of the target loop in Step 2. The myLoopInversion rule in Step 4 is defined
so as to output the subtree as is, and thus to always output (i < n), which corresponds to the
following <SgExprStatement> element and its sub-nodes.

...

<SgIfStmt end="1" then="1">

34 CHAPTER 3. AST TRANSFORMATION RULES

<SgExprStatement>

<SgLessThanOp>

<SgVarRefExp name="i" />

<SgVarRefExp name="n" />

</SgLessThanOp>

</SgExprStatement>

...

On the other hand, the condition of a DO WHILE statement corresponds to SgWhileStmt/SgExprStatement
and its sub-nodes in an XML AST1. Since the myLoopInversion rule matches an <SgWhileStmt>
element, the XPath expression of the condition is given by ./SgExprStatement (relative path nota-
tion). Accordingly, the rule should be modified so that the <SgExprStatement> element specified
by ./SgExpression is copied to the output XML data.

...

<SgIfStmt end="1" then="1">

<xsl:copy-of select="./SgExprStatement" />

...

To make the myLoopInversion rule reusable for other loops, we also need to copy all statements
in the original loop body to the target loop body. See the subtree of the target loop in Step 2.
Since the original loop body contains two expression statements, a(i)=0 and i=i+1, the current
myLoopInvesion rule always outputs these two statements in the target loop body, and thus is not
reusable for other loops. The loop body is represented by the following <SgBasicBlock> element
and its sub-nodes.

...

<SgBasicBlock>

<SgExprStatement>

<SgAssignOp>

<SgPntrArrRefExp lvalue="1">

<SgVarRefExp name="a" />

<SgExprListExp>

<SgVarRefExp name="i" />

</SgExprListExp>

</SgPntrArrRefExp>

<SgIntVal value="0" string="0" />

</SgAssignOp>

</SgExprStatement>

1To figure out such a correspondence, it is helpful to convert the original loop to its XML representation.

3.2. CUSTOM RULES 35

<SgExprStatement>

<SgAssignOp>

<SgVarRefExp name="i" lvalue="1" />

<SgAddOp>

<SgVarRefExp name="i" />

<SgIntVal value="1" string="1" />

</SgAddOp>

</SgAssignOp>

</SgExprStatement>

</SgBasicBlock>

...

On the other hand, the loop body of an DO WHILE statement is represented by SgWhileStmt/SgBasicBlock
and its sub-nodes. Since the myLoopInversion rule matches an <SgWhileStmt> element, the
XPath expression of the loop body is given by ./SgBasicBlock (relative path notation). Accord-
ingly, the myLoopInversion rule should be modified so that all of the sub-nodes of the<SgBasicBlock>
element specified by ./SgBasicBlock are copied to the output XML data.

...

<SgBasicBlock>

<xsl:copy-of select="./SgBasicBlock/*" />

</SgBasicBlock>

...

Finally, a generalized myLoopInversion rule is obtained as follows.

<xsl:template match="SgWhileStmt" mode="myLoopInversion">

<SgIfStmt end="1" then="1">

<xsl:copy-of select="./SgExprStatement" />

<SgBasicBlock>

<SgFortranDo style="0" end="1" slabel="">

<SgNullExpression />

<SgNullExpression />

<SgNullExpression />

<SgBasicBlock>

<xsl:copy-of select="./SgBasicBlock/*" />

<SgIfStmt end="0" then="0">

<xsl:copy-of select="./SgExprStatement" />

<SgBasicBlock>

<SgContinueStmt />

36 CHAPTER 3. AST TRANSFORMATION RULES

</SgBasicBlock>

<SgBasicBlock />

</SgIfStmt>

<SgBreakStmt />

</SgBasicBlock>

</SgFortranDo>

</SgBasicBlock>

<SgBasicBlock />

</SgIfStmt>

</xsl:template>

The above rule is usable for loop inversion of not only the original loop but also other standard
DO WHILE loops. In this way, we can gradually and incrementally generalize an XSLT template rule
step by step so that the rule can cover a wider range of loops.

3.3 Summary

In XevXML, XSLT template rules for basic loop transformations are already predefined. The
predefined rules will usually be used via the xsltgen command described in Chapter 2.

In practical performance optimizations, some systems, applications, application domains, and/or
programmers may demand special code transformations, which are not predefined, for high perfor-
mance, portability, maintainability, and so forth. In such a case, they can define their own code
transformation rules for the special demands.

For defining a custom transformation rule, we first write a simple XSLT rule usable only for
replacing a particular code to its target code, and then gradually generalize the rule so as to make
it reusable for other codes. It is easy to write the initial simple rule by reference to an XML AST
of the target code.

Chapter 4

Internal Structures and Behaviors

Since ROSE already has various features of code analyses and transformations useful to implement
custom code transformation programs, XevXML provides some C++ classes and functions, which
are helpful for such programs to read and write XML ASTs. As a result, code transformation
programs developed with ROSE can handle XML ASTs.

This chapter describes XevXML classes and functions that allows ROSE to handle XML ASTs.
By inheriting the classes, users can develop customized versions of src2xml and xml2src commands.
For example, src2xml would be customized so that some additional XML attributes are written in
an XML AST.

4.1 Utility functions

By using ROSE, it is easy to write an identity translator, i.e., the simplest translator.

/* identity.cpp */

#include <rose.h>

int main(int argc,char** argv){

SgProject* sageProject=frontend(argc,argv);

/* do something here for code transformation */

return backend(sageProject);

}

The frondend() function reads a code and builds its AST. The backend() function passes the
AST to the backend for unparsing and compilation.

XevXML offers a utility function, XevConvertRoseToXml(), for such a ROSE-based translator
to print out a ROSE AST as an XML AST. All of the functions and classes provided XevXML are
defined within a name space, XevXml.

37

38 CHAPTER 4. INTERNAL STRUCTURES AND BEHAVIORS

For example, a simplified version of the src2xml command is as follows. It just prints out an
XML AST, and then immediately ends.

/* simple.cpp */

#include <iostream>

#include <rose.h>

#include <xevxml.hpp>

int main(int argc,char** argv){

SgProject* sageProject=frontend(argc,argv);

/* print out an XML AST to the standard output */

XevXml::XevInitialize();

XevXml::XevConvertRoseToXml(std::cout,&sageProject);

XevXml::XevFinalize();

/* return backend(sageProject); */

return 0; /* backend is not called in this example */

}

Run your compiler with appropriate options to specify the paths to necessary header files and
libraries.

% g++ -I... simple.cpp -o simple -L... -lxevxml -lrose -lxalan-c -lxerces-c

The generated executable, simple, will print out an XML AST of a C or Fortran code to the
standard output.

% ./simple input.c

<?xml version="1.0" encoding="UTF-8"?>

<SgSourceFile file="input.c" lang="2" fmt="2">

<SgGlobal>

...omitted...

</SgGlobal>

</SgSourceFile>

A simplified version of the xml2src command is as follows.

/* simple2.cpp */

#include <iostream>

4.1. UTILITY FUNCTIONS 39

#include <rose.h>

#include <xevxml.hpp>

int main(int argc,char** argv){

SgProject* sageProject=0;

/* read an XML AST from the standard input */

XevXml::XevInitialize();

if(XevXml::XevConvertXmlToRose(std::cin,&sageProject) == false){

std::cerr << " failed" << std::endl;

abort();

}

else {

/* check the AST (optional) */

AstTests::runAllTests(sageProject);

/* unparse the AST and print it out */

XevXml::XevUnparseToStream(std::cout,&sageProject);

}

XevXml::XevFinalize();

return 0;

}

The XevConvertXmlToRose() function reads an XML AST and converts it to a ROSE AST. If
the conversion does not fail, the XevUnparseToStream() function is called to print the ROSE AST
to a C++ stream. Accordingly, the above code, simple2, reads an XML AST from the standard
input, and then unparses it. The unparsed code is printed out to the standard output.

The following combination of the above two commands works as an identity translator.

% ./simple input.c | ./simple2

#include <stdio.h>

int main()

{

...omitted...

return 0;

}

The behaviors of the XevConvertRoseToXml() function can be changed using a XevXmlOption

class object. For example, a slightly-modified vetsion of simple.cpp that uses the XevXmlOption

is as follows.

40 CHAPTER 4. INTERNAL STRUCTURES AND BEHAVIORS

/* simple-mod.cpp */

#include <iostream>

#include <rose.h>

#include <xevxml.hpp>

int main(int argc,char** argv){

SgProject* sageProject=frontend(argc,argv);

/* print out an XML AST to the standard output */

XevXml::XevInitialize();

XevXml::XevXmlOption opt;

/* the following options are disabled by default */

opt.getFortranPragmaFlag() = true; // parse Fortran pragmas

opt.getPrintAddressFlag() = true; // print the address of every AST node

/* execute the conversion with the above options */

XevXml::XevConvertRoseToXml(std::cout,&sageProject,&opt);

XevXml::XevFinalize();

return 0;

}

In the above code, all the options disabled by default are enabled. By default, every “xev
pragma” in a Fortran code, which starts with !$xev, is handled as a comment. By enabling the flag
accessed by the getFortranPragmaFlag() method, such a pragma will be converted to an XML
element. The other options are basically used for debugging.

4.2 Visitor classes

As described in the previous section, a C code whose file name is input.c will be converted to the
following XML AST.

<?xml version="1.0" encoding="UTF-8"?>

<SgSourceFile file="input.c" lang="2" fmt="2">

<SgGlobal>

...omitted...

</SgGlobal>

</SgSourceFile>

ROSE uses C++ class objects, called Sage III class objects, to represent nodes of an AST. That
is, every node of a ROSE AST is an object of a Sage III class. Each Sage III class is a subclass of

4.2. VISITOR CLASSES 41

the SgNode class. For example, the SgGlobal class is one Sage III class, and its object represents
the global scope of a code. On the other hand, every node of an XML AST is an XML element
whose name is the same as the Sage III class name of its corresponding ROSE AST node. Hence,
an <SgGlobal> element appears right after an <SgSourceFile> element, which corresponds to
an SgSourceFile class object representing the source code. See the ROSE reference manual[4]
for more details of Sage III classes. Chapter A also describes XML elements of Sage III classes
currently supported by XevXML.

XML attributes are used to keep the necessary information to rebuild each ROSE AST. For
example, <SgSourceFile> has a lang attribute so that an XML AST can record the language of
the original source code. The attributes of XML AST nodes are described in Chapter A.

To customize the format of an XML AST, XevXML offers two internal C++ classes, XevSageVisitor
and XevXmlVisitor. The former class traverses an AST of Sage III classes used in ROSE, and
translates it to an XML AST. The latter traverses an XML AST to rebuild ROSE’s AST.

The XevConvertRoseToXml() function internally uses the XevSageVisitor class for converting
a ROSE AST to an XML AST. The XevSageVisitor class is a Vistor pattern class that visits every
node of a ROSE AST in a depth-first fashion. Whenever XevSageVisitor visits an AST node, it
writes an XML element whose name is the same as the Sage III class name of an AST node, e.g.,
SgGlobal. When writing XML attributes of each XML element, attribSg*() method is invoked
(Sg* is the name of a Sage III class). Similarly, when writing the sub-nodes of each XML element,
inodeSg*() method is invoked. Therefore, by overloading those methods, a user can customize
XML documents generated by the XevSageVisitor class.

In the following code, a new attribute "foo" whose value is "bar" is added to an <SgGlobal>
element.

/* custom.cpp */

#include <xevxml.hpp>

class MyVisitor: public XevXml::XevSageVisitor

{

public:

MyVisitor():XevXml::XevSageVisitor() {}

void attribSgGlobal(SgNode* node)

{

// print the default attributes

XevXml::XevSageVisitor::attribSgGlobal(node);

std::ostream& os = getOutputStream();

os << " foo=\"str\"";

os << " bar=\"1\"";

}

};

int main(int argc,char** argv)

42 CHAPTER 4. INTERNAL STRUCTURES AND BEHAVIORS

{

SgProject* sageProject=frontend(argc,argv);

MyVisitor visitor;

XevXml::XevXmlOption opt;

XevXml::XevInitialize();

visitor.setXmlOption(&opt);

visitor.write(std::cout,&sageProject);

XevXml::XevFinalize();

return 0;

}

The MyVisitor class is a subclass of XevSageVisitor. The XevSageVisitor::setXmlOption()
method is used to pass an XevXmlOption object to the MyVisitor class object. After that, the
XevSageVisitor::write() method is invoked to write an XML AST to a given std::ostream

object.
The XevSageVisitor::attribSgGlobal()method is overloaded by MyVisitor::attribSgGlobal().

In the new method, the reference to an std::ostream object, which is given by the first argument of
the XevSageVisitor::write()method, i.e., std::cout, is obtained by calling getOutputStream().
Then, two strings are passed to the object. As a result, the strings appear as XML attributes of an
<SgGlobal> element.

% ./custom input.c

<?xml version="1.0" encoding="UTF-8"?>

<SgSourceFile file="input.c" lang="2" fmt="2">

<SgGlobal foo="str" bar="1">

...omitted...

</SgGlobal>

</SgSourceFile>

The XevConvertXmlToRose() function internally uses the XevXmlVisitor class for converting
an XML AST to a ROSE AST. The XevXmlVisitor class is a Vistor pattern class that visits every
node of an XML AST in a depth-first fashion. Whenever XevXmlVisitor visits an XML element,
visigSg*() method is invoked. Therefore, by overloading such a method, a user can customize the
rebuilding process of an AST.

/* custom2.cpp */

#include <xevxml.hpp>

#include <xmlutils.hpp>

4.2. VISITOR CLASSES 43

class MyXmlVisitor: public XevXml::XevXmlVisitor

{

public:

SgNode* visitSgGlobal(xercesc::DOMNode* node, SgNode* parent)

{

SgNode* n =

XevXml::XevXmlVisitor::visitSgGlobal(node,parent);

std::string sval;

if(XevXml::XmlGetAttributeValue(node,"foo",&sval)==true){

std::cerr << " attribute \"foo\" is found" << std::endl;

std::cerr << " the value is " << sval << std::endl;

}

else {

std::cerr << " attribute \"foo\" is not found" << std::endl;

}

int ival;

if(XevXml::XmlGetAttributeValue(node,"bar",&ival)==true){

std::cerr << " attribute \"bar\" is found" << std::endl;

std::cerr << " the value is " << ival << std::endl;

}

else {

std::cerr << " attribute \"bar\" is not found" << std::endl;

}

float fval;

if(XevXml::XmlGetAttributeValue(node,"baz",&fval)==true){

std::cerr << " attribute \"baz\" is found" << std::endl;

std::cerr << " the value is " << fval << std::endl;

}

else {

std::cerr << " attribute \"baz\" is not found" << std::endl;

}

return n;

}

};

int main(int argc,char** argv)

{

SgProject* sageProject=0;

MyXmlVisitor visitor;

XevXml::XmlInitialize();

44 CHAPTER 4. INTERNAL STRUCTURES AND BEHAVIORS

visitor.read(std::cin,&sageProject);

XevXml::XmlFinalize();

return 0;

}

When an XML AST is traversed, every XML element is represented as an xercesc::DOMNode

class object. Because of the depth-first AST traversal, its parent node is already converted to an
SgNode object in many cases. The pointers to those two objects are given to XevXmlVisitor::visitSg*()
as function arguments. If the SgNode object of the parent node is not available yet, the second
argument is NULL.

XevXmlVisitor::visitSg*() has to return a pointer to an SgNode object, which is actually
an Sg* object. For example, the XevXmlVisitor::visitSgGlobal() method is called when a
<SgGlobal> element is visited. This method and its overloaded versions are expected to return a
pointer to an SgGlobal object.

In the above code, XevXmlVisitor::visitSgGlobal() is overloaded by the MyXmlVisitor class
so that a utility function, XevXml::XmlGetAttributeValue(), is called for checking if each attribute
is given or not. Here, XevXml::XmlGetAttributeValue() is a C++ template function defined in
xmlutils.hpp.

% ./custom input.c |./custom2

attribute "foo" is found

the value is str

attribute "bar" is found

the value is 1

attribute "baz" is not found

4.3 Summary

XmlXML is an extensible code transformation framework. Its internal structures and behaviors
can be customized if necessary. The utility functions and classes will be useful to develop tools for
transformation, visualization, and analysis of an XML AST. Use of XML for representing an AST
will by design be helpful to make those tools interoperable.

Chapter 5

Installation

5.1 Requirements

• ROSE compiler infrastructure – http://rosecompiler.org/

• Apache Xerces C++ 3.1.1 – http://xerces.apache.org/

• Apache Xalan C++ 1.0 – http://xml.apache.org/xalan-c/

• PicoJSON – https://github.com/kazuho/picojson/

5.2 Installation guide

1. First of all, some environment variables such as LD LIBRARY PATH, JAVA HOME, and CXX must
be correctly set so as to use ROSE, Xerces, and Xalan.

2. Create a new directory at the top diretocry for building the package.

% mkdir mybuild

% cd mybuild

3. Run the cmake command at the created directory to generate Makefile and copy necessary
files.

% cmake ../

The cmake command accepts various options. For example, the install diretory is changed by
using the -DCMAKE INSTALL PREFIX option.

% cmake -DCMAKE INSTALL PREFIX=/usr/local/xevxml ../

45

46 CHAPTER 5. INSTALLATION

If you need to use a specific version of a library or a header file, you can also use environment
variables CMAKE LIBRARY PATH and CMAKE INCLUDE PATH. For example, if you need to use a
library or a header file in /home/user/local, define those enviromnent variables as follows.

% export CMAKE LIBRARY PATH=/home/user/local/lib:$CMAKE LIBRARY PATH

% export CMAKE INCLUDE PATH=/home/user/local/include:$CMAKE INCLUDE PATH

Those environment variables must be correctly set so that all of the necessary header files and
libraries such as picojson.h and rose.h are found by the cmake command.

See the cmake manual for more details [7].

4. Run the GNU make command.

To compile the package,

% make

To install the package,

% make install

To test the package,

% make test

Some of tests will be failed. But it does not necessarily mean that something is wrong with
the built binaries. Even if everything goes well, XevXML fails in some tests. This is mainly
because XevXML is built on top of ROSE and unable to pass the tests if ROSE cannot
properly parse/unparse the test codes.

Appendix A

XML elements and their attributes

A.1 Class hierarchy

SgNode -+- SgStatement -+- SgDeclarationStatement

|

+- SgExpression -+- SgBinaryOp

| |

| +- SgUnaryOp

+- SgType |

| +- SgValueExp

+- SgSupport

A.2 Statements

This section describes XML elements of SgStatement subclasses currently supported by XevXML.

A.2.1 XML elements

All XML elements of SgStatement subclasses are described below. If an XML element of a
SgStatement subclass has its own XML attributes, the attributes are also listed in the descrip-
tion.

XML element name Description

Declarations
SgAsmStmt asm statement (not tested)

code (string): assembly code
volatile (int): 0 (not volatile) or 1 (volatile)

SgAttributeSpecificationStatement attribute specification (Fortran only)
kind (int): See Section A.2.2.

SgClassDeclaration declaration of a class or a structure
name (string): class name

(continue to next page)

47

48 APPENDIX A. XML ELEMENTS AND THEIR ATTRIBUTES

(continued)
XML element name Description

type (int): 0 (class), 1 (struct), or 2 (union)
SgCommonBlock COMMON block (Fortran only)
SgContainsStatement CONTAINS statement (Fortran only)
SgDerivedTypeStatement derived type declaration (Fortran only)

name (string): derived type name
type (int): 0 (class), 1 (struct), or 2 (union)

SgEntryStatement ENTRY statement (Fortran only)
name (string): entry name
result (string): result variable name

SgEnumDeclaration enum declaration
name (string): enum name

SgEquivalenceStatement EQUIVALENCE statement (Fortran only)
SgFormatStatement FORMAT statement (Fortran only)
SgFortranIncludeLine INCLUDE (Fortran only)

filename (string): filename name
SgFunctionDeclaration function declaration

name (string): function name
end name (int): set named in end statement()

SgFunctionParameterList function parameter list
SgImplicitStatement IMPLICIT statement (Fortran only)
SgInterfaceStatement INTERFACE statement (Fortran only)

name (string): interface name
type (int): SgInterfaceStatement::generic spec enum

SgModuleStatement MODULE statement (Fortran only)
name (string): module name
type (int): 0 (class), 1 (struct), or 2 (union)

SgNamelistStatement NAMELIST statement (Fortran only)
SgPragmaDeclaration pragma declaration
SgProcedureHeaderStatement procedure declaration (Fortran only)

name (string): procedure name
kind (int): subprogram kind
result (string): result variable name
pure (int): 0 (not pure) or 1 (pure)
elemental (int): 0 (not elemental) or 1 (elemental)
recursive (int): 0 (not recursive) or 1 (recursive)

SgProgramHeaderStatement program header (Fortran only)
name (string): program name
elabel (int): set end numeric label()

SgTypedefDeclaration typedef declaration
name (string): typedef name

SgUseStatement USE statement (Fortran only)
name (string): module name
only (int): 0 (no only option) or 1 (only option)

(continue to next page)

A.2. STATEMENTS 49

(continued)
XML element name Description

SgVariableDeclaration variable declaration
name (string): variable name
bitfield (int): bit field
modifier (int): modifier

Other statements
SgAllocateStatement ALLOCATE statement (Fortran only)
SgArithmeticIfStatement arithmetic IF statement (Fortran only)
SgBackspaceStatement BACKSPACE statement (Fortran only)

err (int): set err()

iostat (int): set iostat()

unit (int): set unit()

SgBasicBlock basic block
SgBreakStmt break statement

slabel (string): Fortran DO string label
SgCaseOptionStmt case option of switch statement

construct (string): case construct name
SgClassDefinition class definition

sequence (int): 1 for SEQUENCE ketword
private (int): 1 for PRIVATE keyword
abstract (int): 1 for ABSTRACT keyword

SgCloseStatement CLOSE statement (Fortran only)
err (int): set err()

iostat (int): set iostat()

status (int): set status()

unit (int): set unit()

SgComputedGotoStatement computed GO TO statement (Fortran only)
SgContinueStmt continue statement

slabel (string): Fortran DO string label
SgDeallocateStatement DEALLOCATE statement (Fortran only)
SgDefaultOptionStmt default option of switch statement

construct (string): default construct name
SgDoWhileStmt do-while statement
SgElseWhereStatement ELSEWHERE statement (Fortran only)
SgEndfileStatement ENDFILE statement (Fortran only)

err (int): set err()

iostat (int): set iostat()

unit (int): set unit()

SgExprStatement statement of an expression
SgFlushStatement FLUSH statement (Fortran only)
SgForAllStatement FORALL statement (Fortran95)
SgForInitStatement initial condition of for statement
SgForStatement for statement
SgFortranDo DO statement (Fortran only)

(continue to next page)

50 APPENDIX A. XML ELEMENTS AND THEIR ATTRIBUTES

(continued)
XML element name Description

end (int): set has end statement()

slabel (string): set string label()

style (int): set old style()

elabel (int): set end numeric label()

SgFunctionDefinition function definition
SgGlobal global scope
SgGotoStatement goto statement

slabel (string): string label
nlabel (string): numeric label

SgIfStmt if statement
end (int): set has end statement()

then (int):set use then keyword()

elabel (int):set end numeric label()

ellabel (int):set else numeric label()

SgInquireStatement INQUIRE statemtent (Fortran only)
*** To be described ***

SgLabelStatement label statement
slabel (string): string label
nlabel (string): numeric label

SgNullStatement empty statement (for(...);)
SgNullifyStatement NULLIFY statement (Fortran only)
SgOpenStatement OPEN statement (Fortran only)

*** To be described ***
SgPrintStatement PRINT statement (Fortran only)

*** To be described ***
SgReadStatement READ statement (Fortran only)

*** To be described ***
SgReturnStmt return statement
SgRewindStatement REWIND statement (Fortran only)

*** To be described ***
SgStopOrPauseStatement STOP and PAUSE statements (Fortran only)

type (int): 0 (unknown), 1 (stop), or 2 (pause)
SgSwitchStatement switch statement

slabel (string): string label
elabel (string): end numeric label

SgWhereStatement WHERE statement (Fortran only)
SgWhileStmt while statement

end (int): set has end statement()

slabel (string): set string label()

elabel (string): set end numeric label()

SgWriteStatement WRITE statement (Fortran only)
err (int): set err()

fmt (int): set format()

(continue to next page)

A.2. STATEMENTS 51

(continued)
XML element name Description

iostat (int): set iostat()

nml (int): set namelist()

rec (int): set rec()

unit (int): set unit()

A.2.2 XML attributes

All XML elements of SgStatament subclasses have label attribute to keep the numeric label
number because Fortran allows a statement to have a numetic label.

In addition, XML elements of SgDeclarationStatament subclasses have the following attributes
for modifiers.

• declaration modifier

In an XML AST, only one of the following flags can be specified by a decimal number to
indicate the kind of a declaration.

0x01 : unknown

0x02 : default

0x04 : friend

0x08 : typedef

• type modifier

Multiple flags might be combined by using logical OR. The value of this XML attribute
(combination of the following flags) is written as a decimal number to indicate the type
information.

0x00001 : unknown value (error)

0x00002 : unknown value (default)

0x00004 : restrict qualifier (for C/C++)

0x00008 : allocatable attribute specifier (for Fortran 90)

0x00010 : asynchronous attribute specifier (for Fortran 2003)

0x00020 : bind attribute specifier (for Fortran 2003)

0x00040 : data attribute specifier (for Fortran 77)

0x00080 : dimension attribute specifier (for Fortran 77)

0x00100 : intent(in) attribute specifier (for Fortran 90)

0x00200 : intent(out) attribute specifier (for Fortran 90)

0x00400 : intent(inout) attribute specifier (for Fortran 90)

0x00800 : intrinsic attribute specifier (for Fortran 90)

0x01000 : optional attribute specifier (for Fortran 90)

0x02000 : optional attribute specifier (for Fortran 90)

52 APPENDIX A. XML ELEMENTS AND THEIR ATTRIBUTES

0x04000 : optional attribute specifier (for Fortran 90)

0x08000 : save attribute specifier (for Fortran 77)

0x10000 : target attribute specifier (for Fortran 90)

0x20000 : value attribute specifier (for Fortran 2003)

• cv modifier

Must be either const, volatile, or neither.

0x1 : unknown value (error)

0x2 : default value

0x4 : constant qualifier

0x8 : volatile qualifier

• access modifier

Only one of the following flags can be specified by a decimal number to indicate the accessi-
bility.

0x01 : error value

0x02 : private access (local to class members)

0x04 : protected access (local to class members and membrs of derived classes)

0x08 : public access (access within enclosing namespace)

0x10 : default value (public access)

0x20 : fortran default value

• storage modifier

Only one of the following flags can be specified by a decimal number to location or properties
of declarations.

0x01 : error value

0x02 : default value

0x04 : extern storage modifier

0x08 : static storage modifier

0x10 : auto storage value

0x20 : (not used)

0x40 : register storage modifier

0x80 : mutable storage modifier

• thread local

0 or 1. If 1 is given, the variable is thread-local.

The <SgAttributeSpecificationStatement> element requires the kind attribute below.

A.3. EXPRESSIONS 53

• kind

One of the following values can be specified (Fortran).

0 : unknown

1 : private

2 : public

3 : allocatable

4 : asynchronous

5 : bind

6 : data

7 : dimension

8 : external

9 : intent

10 : intrinsic

11 : optional

12 : parameter

13 : pointer

14 : protected

15 : save

16 : target

17 : value

18 : volatile

In the case of kind=9̈¨, the intent attribute is required to be set to 600 (IN), 601 (OUT), or 602
(INOUT)

A.3 Expressions

This section describes XML elements of SgExpression subclasses currently supported by XevXML.
XML elements of most SgExpression subclasses have paren and lvalue attributes whose values are
integers. Their values are given to SgExpression::set need paren() and SgExpression::set lvalue(),
respectively. If an XML element of a SgExpression subclass has its own XML attributes, the at-
tributes are also listed in the description.

XML element name Description

Binary operators

(continue to next page)

54 APPENDIX A. XML ELEMENTS AND THEIR ATTRIBUTES

(continued)
XML element name Description

SgAddOp + operator (addition)
SgAndAssignOp &= operator (bitwise AND assignment)
SgAndOp && operator (logical AND)
SgArrowExp -> operator (sturcture derefence (pointer))
SgAssignOp = operator (assignment)
SgBitAndOp & operator (bitwise AND)
SgBitOrOp | operator (bitwise OR)
SgBitXorOp ˆ operator (bitwise XOR)
SgCommaOpExp , operator (comma)
SgConcatenationOp Fortran // operator (string concatenation)
SgDivAssignOp /= operator (division assignment)
SgDivideOp / operator (division)
SgEqualityOp == operator (equal to)
SgExponentiationOp Fortran ** operator (exponential)
SgGreaterOrEqualOp >= operator (greater than or equal to)
SgGreaterThanOp > operator (greater than)
SgIorAssignOp |= operator (bitwise OR assignment)
SgLessOrEqualOp <= operator (less than or equal to)
SgLessThanOp < operator (less than)
SgLshiftAssignOp <<= operator (bitwise left shift assignment)
SgLshiftOp << operator (bitwise left shift)
SgMinusAssignOp -= operator (subtraction assignment)
SgModAssignOp %= operator (modulo assignment)
SgModOp % operator (modulo)
SgMultAssignOp *= operator (multiplication assignment)
SgMultiplyOp * operator (multiplication)
SgNotEqualOp != operator (not equal to)
SgOrOp || operator (logical OR)
SgPlusAssignOp += operator (addition assignment)
SgPointerAssignOp Fortran => operator (pointer assignment)
SgPntrArrRefExp array subscript (a[b])
SgRshiftAssignOp >>= operator (bitwise right shift assignment)
SgRshiftOp >> operator (bitwise right shift)
SgSubtractOp - operator (subtraction)
SgUserDefinedBinaryOp user defined binary operator

name (string) :operator name
SgXorAssignOp ˆ= operator (bitwise XOR assignment)
Unary operators
SgAddressOfOp & operator (address)
SgBitComplementOp ˜operator (bitwise NOT)
SgMinusMinusOp -- operator (decrement)

mode (int): 0 (prefix) or 1 (postfix)
SgMinusOp Unary - operator (minus)

(continue to next page)

A.3. EXPRESSIONS 55

(continued)
XML element name Description

mode (int): 0 (prefix) or 1 (postfix)
SgNotOp ! operator (logical NOT)
SgPlusPlusOp ++ operator (increment)

mode (int): 0 (prefix) or 1 (postfix)
SgUnaryAddOp Unary + operator (plus)
SgUserDefinedUnaryOp user defined unary operator

name (string) :operator name
Values
SgBoolValExp boolean value

value (int)
SgCharVal character

value (char)
string (string): the value as a string

SgComplexVal complex number value
SgDoubleVal double-precision float value

value (double)
string (string): the value as a string

SgEnumVal enum value
value (int)

SgFloatVal float value
value (float)
string (string): the value as a string

SgIntVal integer value
value (int)
string (string): the value as a string

SgLongDoubleVal long double value
value (long double)
string (string): the value as a string

SgLongIntVal long int value
value (long int)
string (string): the value as a string

SgLongLongIntVal long long int value
value (long long int)
string (string): the value as a string

SgShortVal short int value
value (short int)
string (string): the value as a string

SgStringVal a string literal
value (string)
single (int): 0 (double quote) or 1 (single quote)

SgUnsignedCharVal unsigned character
value (unsigned char)
string (string): the value as a string

(continue to next page)

56 APPENDIX A. XML ELEMENTS AND THEIR ATTRIBUTES

(continued)
XML element name Description

SgUnsignedIntVal unsigned int value
value (unsigned int)
string (string): the value as a string

SgUnsignedLongLongIntVal unsigned long long int value
value (unsigned long long int)
string (string): the value as a string

SgUnsignedLongVal unsigned long int value
value (unsigned long int)
string (string): the value as a string

SgUnsignedShortVal unsigned short int value
value (unsigned short int)
string (string): the value as a string

SgWcharVal whar t value
value (unsigned short)
string (string): the value as a string

Other expressions
SgAggregateInitializer initialization with aggregated data (struct complex x={1,2})

implicit (int): 0 (need explicit braces) or 1 (not need)
SgAssignInitializer initialization (i=0)
SgAsteriskShapeExp Fortran * expression (write(*,*))
SgCastExp type cast ((int*)x)

ctype (int): cast type (set cast type())
implicit (int): 0 (explicit cast) or 1 (implicit cast)

SgColonShapeExp Fortran colons for separating array dimensions (x(0:1))
SgConditionalExp ternary conditional (a?b:c)
SgConstructorInitializer initialization with a constructor (x=myclass(0,1))

name (int): set need name().
qual (int): set need qualifier().
paren after name (int): set need parenthesis after name().
unknown (int): set associated class unknown().

SgDotExp structure member access (x.y)
SgExprListExp list of expressions
SgFunctionCallExp function call (f())
SgFunctionRefExp function reference

name (string): function name.
kind (int): 1(function(default)) or 2(subroutine) (for Fortran)

SgImpliedDo Fortran implied loop expression ((/ /))
SgLabelRefExp label refernce

nlabel (int): numeric label value
type (int): label type

SgNullExpression null expression
SgPointerDerefExp pointer dereference (*x, x is a pointer)
SgSizeOfOp sizeof operator (sizeof(int))

(continue to next page)

A.4. TYPES 57

(continued)
XML element name Description

SgSubscriptExpression Fortran subscript expressions
SgVarArgEndOp end of vararg
SgVarArgOp variable length list of arguments
SgVarArgStartOp beginning of vararg
SgVarRefExp variable reference

name (string): variable name

A.4 Types

This section describes XML elements of SgType subclasses currently supported by XevXML. XML
elements of most SgType subclasses have the kind attribute whose value is an integer. The attribute
value is used as a type kind paremeter used in Fortran.

XML element name Description

SgArrayType array type
SgClassType class type
SgEnumType enum type
SgFunctionType function type
SgModifierType modifiers
SgPointerType pointer type
SgTypeBool boolean type
SgTypeChar character type
SgTypeComplex complex type (in C99, double Complex x;)
SgTypeDefault unknown type (internal use)
SgTypeDouble double-precision floating-point type
SgTypeEllipse ellipse type (a variable number of parameters, “...”)
SgTypeFloat single-precision floating-point type
SgTypeImaginary imaginary type (in C99, float Imaginary x;)
SgTypeInt integer type
SgTypeLong long integer type
SgTypeLongDouble long double type
SgTypeLongLong long long integer type
SgTypeShort short integer type
SgTypeSignedChar signed character type
SgTypeSignedInt signed integer type
SgTypeSignedLong signed long integer type
SgTypeSignedLongLong signed long long integer type
SgTypeSignedShort signed short integer type
SgTypeString string type
SgTypeUnsignedChar unsigned character type
SgTypeUnsignedInt unsigned integer type
SgTypeUnsignedLong unsigned long integer type

(continue to next page)

58 APPENDIX A. XML ELEMENTS AND THEIR ATTRIBUTES

(continued)
XML element name Description

SgTypeUnsignedLongLong unsigned long long integer type
SgTypeUnsignedShort unsigned short integer type
SgTypeVoid void type
SgTypedefType typedef type

A.5 Other elements

XML element name Description

SgDataStatementGroup a group of data statement objects (Fortran only)
SgDataStatementObject data statement object (Fortran only)
SgDataStatementValue data statement value (Fortran only)

fmt (int):
0(unknown), 1(default), 2(explicit), 3(implicit), or 4(implied do)

SgFormatItem item of FORMAT statement (Fortran only)
fmt (string): format data
single (int): non-zero to use single quotes
double (int): non-zero to use double quotes

SgFunctionParameterTypeList type lists of function parameters
SgNameGroup group of names for SgNamelistStatement (Fortran only)

group (string) : group name
names (string) : comma-separated names (e.g. ”a,b,c,...”)

SgPragma prama in a pragma declaration
pragma (string): string(s) of a pragma

SgSourceFile source file (root elemement of an XML AST)
file (string): filename of the original code
lang (int): 0 (error), 1 (unknown), 2 (C), 3 (C++), or 4 (Fortran)
fmt (int): 0 (unknown), 1 (fixed), or 2 (free) (for Fortran)

SgTypedefSeq list of typedefs, for which the current SgType is the base type
SgCommonBlockObject object in a COMMON block (Fortran only)

name (string): name of the COMMON block object
SgInitializedName initialized name (declared symbols)

name (string): name of the symbol
prev (string): previous symbol for cray pointer

SgInterfaceBody body of INTERFACE statement (Fortran only)
name (string): name of the INTERFACE function

SgRenamePair alias of a variable defined USE statement (Fortran only)
lname (string): local name
uname (string): use name

Bibliography

[1] Extensible Markup Language (XML) 1.1 (Second Edition). http://www.w3.org/TR/xml11/.

[2] Introducing JSON. http://www.json.org/.

[3] ROSE compiler infrastructure. http://rosecompiler.org.

[4] ROSE web reference. http://rosecompiler.org/ROSE_HTML_Reference/index.html.

[5] XML Path Language (XPath) Version 1.0. http://www.w3.org/TR/xpath/.

[6] Michael Kay. XSLT 2.0 and XPath 2.0 Programmer’s Reference (Programmer to Programmer).
Wrox Press Ltd., 4 edition, 2008.

[7] Kitware. CMake. http://www.cmake.org/.

[8] Ken Naono, Keita Teranishi, John Cavazos, and Reiji Suda, editors. Software Automatic
Tuning – from concepts to state-of-the-art results. Springer, 2010.

[9] Dan Quinlan. ROSE: Compiler support for object-oriented frameworks. Parallel Processing
Letters, 10(02n03):215–226, 2000.

[10] Hiroyuki Takizawa, Shoichi Hirasawa, Yasuharu Hayashi, Ryusuke Egawa, and Hiroaki
Kobayashi. Xevolver: An XML-based code translation framework for supporting HPC appli-
cation migration. In IEEE International Conference on High Performance Computing (HiPC),
2014.

[11] Hiroyuki Takizawa, Shoichi Hirasawa, and Hiroaki Kobayashi. Xevolver: An XML-based
programming framework for software evolution. Poster presentation at Supercomputing
2013 (SC13), 2013.

[12] D. Tidwell. XSLT. O’Reilly Media, 2008.

59

