Framework for Separation of Concerns Between
Application Requirements and System Requirements

SIAM Conference on Computational Science & Engineering 2015
Mar 18, 2015@Salt Lake City Convention Center

Hiroyuki Takizawa, Shoichi Hirasawa, and Hiroaki Kobayashi

(Tohoku University/JST)

2

SIAM Computational Science & Engineering 2015

BACKGROUND

« HPC programming = team work of programmers with different concerns
‘ Application developers (= computational scientists)
 write a program so as to get correct results
-> Main concern: relationship between simulation models and programs,
& Performance tuners (= computer scientists/engineers)
* write a program so as to get high performance

—> Main concern: relationship between programs and computing systems.

model simulation code system
ta, @
Ol

Application requirements System requirements

-
-
«—>

3 SIAM Computational Science & Engineering 2015

WHAT'S THE PROBLEM?

« System complexity is increasing
* Need to consider both parallelism and heterogeneity
 Also need to manage deeper memory/storage hierarchy, power, fault tolerance, ...
System-aware performance optimizations are needed for high performance
- An HPC application is specialized for a particular system

« System diversity is also increasing

 Different processor combinations - - -
+ Different system scales - & X 3 .- & X g

« Different interconnect network topologies

« Different system operation policies - - -

What can we do to achieve high performance on various systems?

4 SIAM Computational Science & Engineering 2015

XEVOLVER PROJECT

How can we help legacy application migration?
It is difficult because system-specific optimizations are tightly interwoven with application codes.

 System-aware Code Optimizations in Existing Applications
« Egawa@Tohoku-U

» The code patterns should be refactored because they potentially (likely) degrade the performance
portability across different systems.

 System-aware Code Optimizations for “PostPeta” Systems

« Suda@U-Tokyo and Takahashi@U-Tsukuba
« New optimization techniques and algorithms for future systems
Communication-avoiding algorithms, etc (Suda)
Highly-optimized implementations for GPU clusters, etc (Takahashi).
* Representation of System-awareness
» Takizawa@Tohoku-U (PI)

» How to separate system-awareness from application codes

5 SIAM Computational Science & Engineering 2015

OUR GOAL = APPROPRIATE DIVISION OF LABOR

. Separation of system-awareness from application programs

Simulation code

S B EH

System -specific implementations and optimizations

W —>

/

There are many approaches to abstraction of system-awareness
« System-aware implementations with a common interface = Numerical libraries
 Standardized programming models and languages = MPI, OpenMP, OpenACC ...

In reality, we still need to manually modify a code for high performance.
- How can we abstract such code modifications?

6 SIAM Computational Science & Engineering 2015

A MOTIVATING EXAMPLE

 Numerical Turbine (NT)
 Developed by Prof. Yamamoto (Tohoku U.)
* 44 loop nests of the code have the same loop structure.
 The loop nests are optimized for NEC SX-9 system.

* OpenACC compiler cannot vectorize the loop nests for GPUs.

 Because of the same loop structure, all the loop nests need to be
modified in the same way for GPUs.

7 SIAM Computational Science & Engineering 2015

REPETITIVE PATTERNS IN CODE MODIFICATIONS

correct programs

fast programs

Manual code modifications can be replaced with a smaller number of mechanical
code transformations.

8 SIAM Computational Science & Engineering 2015

XEVOLVER FRAMEWORK

Various transformations are required for replacing arbitrary code modifications.
= cannot be expressed by combining predefined transformations.

—> Xevolver : a framework for custom code transformations

s2s Optimized
translator for System A

Optimized
for System B

Translation rules

* Define the code transformation of each annotation
* Different systems can use different rules

e Users can define their own code transformations

XML AST

{

for(i=0;i<N;i++){
for(j=0;j<M; j++){

}...
}

<SgBasicBlock>
<SgForStatement>

<SgBacicBlock>
<SgForStatement>

</SgForStatement>
</SgBasicBlock>
</SgForStatement>
</SgBasicBlock>

10 SIAM Computational Science & Engineering 2015

PROOF-OF-CONCEPT IMPLEMENTATION

F- /?\ﬁ I #/.\ﬁl
|_.'J . g
1

C/Fortran Rose AST XMLAST XMLAST Rose AST C/Fortran

]

- On top of the ROSE compiler infrastructure
v" Interconversion between ROSE ASTs and XML ASTs.
: XSLT is employed to describe translation rules
v' XSLT rules can be written in a text format.
v" Inthe framework, other XML-related technologies are also available for
translation, analysis, and visualization of ASTs.
- Apache Xerces and Xalan libraries are used for XML data representation and translation.

11 SIAM Computational Science & Engineering 2015

CUSTOM CODE TRANSFORMATION

Application code is just annotated with a user-defined mark (directive/comment).

/

l$xev loop_ tag
do k=1,n-1
do j=1,n-1
do i=1,n-1
B(1i,j,k)=A(1,],k)
end do
end do
end do

Application code

~
"xev loop tag":{
"target":"SgFortranDo",
"rules":[_
N {"chill unroll jam":{"var":"k","max":4}},
{"chill unroll":{"var":"i","max":2}}
] Loop Unroll
}
}

The translation rule is defined in an external file

12 SIAM Computational Science & Engineering 2015

CUSTOM CODE TRANSFORMATION

Application code is just annotated with a user-defined mark (directive/comment).

/

|

l$xev loop_ tag
do k=1,n-1
do j=1,n-1
do i=1,n-1
B(1i,j,k)=A(1,],k)
end do
end do
end do

Application code

<xsl:template match= "SgFortranDo">

<xsl:choose>

<xsl:when test= "preceding-sibling::*[1]/SgPragma/@pragma = 'xev loop_tag'"'>
<xsl:comment>

test-3.xsl xev loop tag

< /xsl:comment>

<xsl:variable name= "step1"”>

| <xsl:apply-templates select= ", " mode="chill_unroll_jam">
| <xsl:with-param name= "max" select="4" />
{ <xsl:with-param name= "var" select=""k"'" />

| </xsl:apply-templates> Unroll and jam

| </xsl:variable>

I <xsl:apply-templates select= "exs/t:node-set($step1)”
i mode= "find_loop_and_unroll” /> LOOp unrollin g
| <[/xsl:when>

<xsl:otherwise>
<xsl:copy>
<xsl:copv-of select="@*" />

Every translation rule is written declaratively in XML (XSLT).
Users can customize it without developing their own code translators.

</xsl:choose>
</xsl:template>

The translation rule is defined in an external file

13 SIAM Computational Science & Engineering 2015

*1 Takizawa et al@HiPC2014.

RECENT PUBLICATION ™

* Real-world applications originally developed for NEC SX-9
have been ported to OpenACC.

« Numerical Turbine (Yamamoto et al@Tohoku-U)
« Nano-Powder Growth Simulation (Shigeta@Osaka-U)
« MSSG-A (Takahashi et al@JAMSTEC)

Mo-Si system

._
<
2

<
5

—
=
2

oncentration (#/kg)
s,

—

14 SIAM Computational Science & Engineering 2015

PERFORMANCE EVALUATION RESULTS (NT)

WMSX-9 MmMTeslaK20 mTesla C2070 Core i7-930

Different systems require different optimizations
= importance of the separation for performance portability

Speedup Ratio

GPU-aware code optimizations are expressed as code

0.01 translation rules in an external XML file.
Kool VI AU —> The optimizations are enabled for GPU and disabled for SX-9

Iy —— = High performance portability between GPU and SX-9

(Main kernels of Numerical Turbine)

Suda@U-Tokyo

15 SIAM Computational Science & Engineering 2015

DEMOCRATIZING CODE TRANSFORMATIONS! /Ongoing

program loop_inv0 Automatic generation of translation rules

I$xev tgen variable(i_, i0_, i1_)
I$xev tgen list(stmt_) A list variable catches multiple things

I$xev tgen src begin
I$xev(.) loop inv

Directive that drives transform

dolL =10, 11 The code pattern transformation
call xev_exec(stmt_)
end do : :
I$xev tgen src end Special form to catch arbitrary statement
I$xev tgen dst begin Loop is reversed
doi_=i1_,1i0_, -1
call xev_exec(stmt_) The code pattern transformation
end do
'Sxev tgen dst end Reproduces the caught statement

end program loop_inv0

16 SIAM Computational Science & Engineering 2015

CONCLUSIONS

e Xevolver Framework
= No new languages and models = incremental migration
« AST is converted to a text format (XML) and exposed to programmers.

« System-specific optimizations are separated from app.
« Computational scientists can maintain the original code
 Performance tuners describe system-specific optimizations in an external file
- Helpful for long-term software evolution.

We need a standard way to describe system-awareness to fight against never-
ending system changes.

— Standardized Optimization Programming Interface

17 SIAM Computational Science & Engineering 2015

ACKNOWLEDGEMENTS

« We would like to thank Profs. Satoru YAMAMOTO, Masaya
SHIGETA, and Keiko TAKAHASHI for allowing us to use their
simulation codes for the performance evaluation.

« This work was partially supported by JST Post-Peta CREST and
Grant-in-Aid for Scientific Research(B) #25280041.

[Xevolver 1

Xevolver with some sample translation rules is online available at
http://xev.arch.is.tohoku.ac.jp.

Your feedbacks (and bug reports) are welcome!

