
1

SIAM Conference on Computational Science & Engineering 2015

Mar 18, 2015@Salt Lake City Convention Center

Hiroyuki Takizawa, Shoichi Hirasawa, and Hiroaki Kobayashi

(Tohoku University/JST)

Framework for Separation of Concerns Between

Application Requirements and System Requirements

2

BACKGROUND

• HPC programming = team work of programmers with different concerns

• Application developers (= computational scientists)

• write a program so as to get correct results

 Main concern: relationship between simulation models and programs.

• Performance tuners (= computer scientists/engineers)

• write a program so as to get high performance

 Main concern: relationship between programs and computing systems.
simulation codemodel system

Application requirements System requirements

SIAM Computational Science & Engineering 2015

3

WHAT’S THE PROBLEM?
• System complexity is increasing

• Need to consider both parallelism and heterogeneity

• Also need to manage deeper memory/storage hierarchy, power, fault tolerance, …

System-aware performance optimizations are needed for high performance

 An HPC application is specialized for a particular system

• System diversity is also increasing

• Different processor combinations

• Different system scales

• Different interconnect network topologies

• Different system operation policies

X 3 X 9

What can we do to achieve high performance on various systems?

SIAM Computational Science & Engineering 2015

4

• System-aware Code Optimizations in Existing Applications

• Egawa@Tohoku-U

• The code patterns should be refactored because they potentially (likely) degrade the performance

portability across different systems.

• System-aware Code Optimizations for “PostPeta” Systems

• Suda@U-Tokyo and Takahashi@U-Tsukuba

• New optimization techniques and algorithms for future systems

• Communication-avoiding algorithms, etc (Suda)

• Highly-optimized implementations for GPU clusters, etc (Takahashi).

• Representation of System-awareness

• Takizawa@Tohoku-U (PI)

• How to separate system-awareness from application codes

XEVOLVER PROJECT

How can we help legacy application migration?
It is difficult because system-specific optimizations are tightly interwoven with application codes.

SIAM Computational Science & Engineering 2015

5

OUR GOAL = APPROPRIATE DIVISION OF LABOR

• Separation of system-awareness from application programs

There are many approaches to abstraction of system-awareness

• System-aware implementations with a common interface = Numerical libraries

• Standardized programming models and languages = MPI, OpenMP, OpenACC …

Simulation code

System-specific implementations and optimizations

+

In reality, we still need to manually modify a code for high performance.
 How can we abstract such code modifications?

SIAM Computational Science & Engineering 2015

6

A MOTIVATING EXAMPLE

• Numerical Turbine (NT)

• Developed by Prof. Yamamoto (Tohoku U.)

• 44 loop nests of the code have the same loop structure.

• The loop nests are optimized for NEC SX-9 system.

• OpenACC compiler cannot vectorize the loop nests for GPUs.

• Because of the same loop structure, all the loop nests need to be

modified in the same way for GPUs.

…

…

SIAM Computational Science & Engineering 2015

7

REPETITIVE PATTERNS IN CODE MODIFICATIONS

model

correct programs

fast programs

Manual code modifications can be replaced with a smaller number of mechanical
code transformations.

SIAM Computational Science & Engineering 2015

Repeated patterns within a code

8

……………….
……………….
……………….
……………….
……………….
……………….

XEVOLVER FRAMEWORK
Various transformations are required for replacing arbitrary code modifications.

= cannot be expressed by combining predefined transformations.

 Xevolver : a framework for custom code transformations

……………….
……………….
……………….
……………….
……………….
……………….

s2s
translator

Predefined or user-defined annotations

……………….
……………….
……………….
……………….
……………….
……………….

Translation rules
• Define the code transformation of each annotation
• Different systems can use different rules
• Users can define their own code transformations

Optimized

for System A

App code

Optimized

for System B

……………….
……………….
……………….
……………….
……………….
……………….

SIAM Computational Science & Engineering 2015

9

XML AST

<SgBasicBlock>
<SgForStatement>
...
<SgBacicBlock>
<SgForStatement>
...

</SgForStatement>
</SgBasicBlock>
</SgForStatement>

</SgBasicBlock>

SgFortranStatement

SgFortranStatement

SgBasicBlock……

SgBasicBlock

……

An AST is a data tree and naturally represented as an XML document.

{
for(i=0;i<N;i++){
for(j=0;j<M;j++){
...
}

}
}

SIAM Computational Science & Engineering 2015

10

PROOF-OF-CONCEPT IMPLEMENTATION

- On top of the ROSE compiler infrastructure

 Interconversion between ROSE ASTs and XML ASTs.

- XSLT is employed to describe translation rules

 XSLT rules can be written in a text format.

 In the framework, other XML-related technologies are also available for

translation, analysis, and visualization of ASTs.

- Apache Xerces and Xalan libraries are used for XML data representation and translation.

………………..

……………….

……………….

……………….

ROSE parser SRC2XML

Rose AST XML AST

XSLT

XSLT engine

XML AST

ROSE unparser

……………….

……………….

………………..

……………….

XML2SRC

Rose ASTC/Fortran C/Fortran

SIAM Computational Science & Engineering 2015

11

!$xev loop_tag
do k=1,n-1
do j=1,n-1
do i=1,n-1
B(i,j,k)=A(i,j,k)

end do
end do

end do

{
"xev loop_tag":{

"target":"SgFortranDo",
"rules":[

{"chill_unroll_jam":{"var":"k","max":4}},
{"chill_unroll":{"var":"i","max":2}}

]
}

}

CUSTOM CODE TRANSFORMATION
Application code is just annotated with a user-defined mark (directive/comment).

Application code

The translation rule is defined in an external file

Unroll and jam

Loop Unroll

SIAM Computational Science & Engineering 2015

12

CUSTOM CODE TRANSFORMATION

!$xev loop_tag
do k=1,n-1
do j=1,n-1
do i=1,n-1
B(i,j,k)=A(i,j,k)

end do
end do

end do

Application code is just annotated with a user-defined mark (directive/comment).

<xsl:template match="SgFortranDo">
<xsl:choose>
<xsl:when test="preceding-sibling::*[1]/SgPragma/@pragma = 'xev loop_tag'">
<xsl:comment>
test-3.xsl xev loop_tag
</xsl:comment>

<xsl:variable name="step1">
<xsl:apply-templates select="." mode="chill_unroll_jam">
<xsl:with-param name="max" select="4" />
<xsl:with-param name="var" select="'k'" />
</xsl:apply-templates>
</xsl:variable>

<xsl:apply-templates select="exslt:node-set($step1)"
mode="find_loop_and_unroll" />
</xsl:when>

<xsl:otherwise>
<xsl:copy>
<xsl:copy-of select="@*" />
<xsl:apply-templates />
</xsl:copy>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

Application code

The translation rule is defined in an external file

Unroll and jam

Loop unrolling

Every translation rule is written declaratively in XML (XSLT).
Users can customize it without developing their own code translators.

SIAM Computational Science & Engineering 2015

13

RECENT PUBLICATION *1

• Real-world applications originally developed for NEC SX-9
have been ported to OpenACC.

• Numerical Turbine (Yamamoto et al@Tohoku-U)

• Nano-Powder Growth Simulation (Shigeta@Osaka-U)

• MSSG-A (Takahashi et al@JAMSTEC)

Xevolver can express system-awareness in an XML data format for migrating all the
applications to OpenACC platform without major modifications.

*1 Takizawa et al@HiPC2014.

SIAM Computational Science & Engineering 2015

14

PERFORMANCE EVALUATION RESULTS (NT)

SIAM Computational Science & Engineering 2015

Speedup due to code transformations
(Main kernels of Numerical Turbine)

Different systems require different optimizations

= importance of the separation for performance portability

GPU-aware code optimizations are expressed as code
translation rules in an external XML file.
 The optimizations are enabled for GPU and disabled for SX-9

= High performance portability between GPU and SX-9

15

DEMOCRATIZING CODE TRANSFORMATIONS!

program loop_inv0

!$xev tgen variable(i_, i0_, i1_)

!$xev tgen list(stmt_)

!$xev tgen src begin

!$xev(.) loop inv

do i_ = i0_, i1_

call xev_exec(stmt_)

end do

!$xev tgen src end

!$xev tgen dst begin

do i_ = i1_, i0_, -1

call xev_exec(stmt_)

end do

!$xev tgen dst end

end program loop_inv0

A list variable catches multiple things

The code pattern before transformation

Directive that drives transform

Special form to catch arbitrary statement

Loop is reversed

Reproduces the caught statement

The code pattern after transformation

Automatic generation of translation rules

SIAM Computational Science & Engineering 2015

Ongoing

Suda@U-Tokyo

16

CONCLUSIONS

• Xevolver Framework

= No new languages and models = incremental migration

• AST is converted to a text format (XML) and exposed to programmers.

• System-specific optimizations are separated from app.

• Computational scientists can maintain the original code

• Performance tuners describe system-specific optimizations in an external file

 Helpful for long-term software evolution.

We need a standard way to describe system-awareness to fight against never-
ending system changes.

 Standardized Optimization Programming Interface

SIAM Computational Science & Engineering 2015

17

ACKNOWLEDGEMENTS

• We would like to thank Profs. Satoru YAMAMOTO, Masaya
SHIGETA, and Keiko TAKAHASHI for allowing us to use their
simulation codes for the performance evaluation.

• This work was partially supported by JST Post-Peta CREST and
Grant-in-Aid for Scientific Research(B) #25280041.

Xevolver with some sample translation rules is online available at
http://xev.arch.is.tohoku.ac.jp.

Your feedbacks (and bug reports) are welcome!

Xevolver SEARCH

SIAM Computational Science & Engineering 2015

